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Abstract

This paper addresses the exact solution of the free vibrations of a beam subjected to an axial force and carrying a

concentrated rotary mass along its length. The vibration problem is frequently encountered in the design and modeling of

resonant double-ended tuning fork (DETF) micro-structures, where an exact model is needed to determine the natural

frequencies of vibration as a function of design and operational parameters. The significance of the approach presented in

this study is first to develop a model that includes all the contributing parameters and second that its solution has the

ability to determine the exact mode shapes of vibration. These eigenvectors are necessary in the study of the time-domain

response of resonators and also determine the stability regions for the operation of electrostatic comb-drive exciters/

detectors. The effects of the axial force, location, mass ratio, and the radius of gyration on the natural frequencies and

mode shapes of DETF are investigated. It has been shown that depending on the location of the concentrated mass,

the inclusion of its rotary inertia may either decrease or increase the natural frequencies of the resonator compared with the

case of no rotary inertia is included. In the case of designing a resonator to perform as a sensor, one can make use of the

presented model to determine how the mass ratio, location and the radius of gyration can alter the sensitivity of the sensor

in response to the input measurand.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A resonator is a structure designed to vibrate at a specified frequency, usually one of its own natural
frequencies. Micro-machined mechanical resonators are the building blocks of many MEMS devices
combined such as the radio frequency filters and resonant sensors. The natural frequencies of a resonator are
its key design parameters, which in turn, are functions of the inertia and the stiffness of that structure. The
mass and the modulus of elasticity of a solid structure are stable and highly robust parameters that
consequently, leads to the robustness and stability of the natural frequencies of that structure. Any slight
variations in the natural frequency could even be used to determine some of the material properties such as the
fatigue-life [1].

The stiffness of the structure is not only a function of its elasticity but also depends on the applied force, as
the case of strings in tension. An applied force can alter the stiffness of the structure and hence, its natural
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

A beam cross-sectional area
E modulus of elasticity
I area moment of the cross-sectional area

of the beam
LL left side beam length
LR right side beam length
M lumped mass
ML left side beam bending moment
MR right side beam bending moment
P beam axial force
r lumped mass radius of gyration
t time
T time function
VL left side beam shear force

VR right side beam shear force
W �

L left side beam deflection
W �

R right side beam deflection
x�L left side beam abscissa coordinate
x�R right side beam abscissa coordinate
Y �L left side beam mode shape
Y �R right side beam mode shape
Z dimensionless lumped mass radius of

gyration
m dimensionless mass ratio
x dimensionless mass location
r density
s dimensionless axial force
o beam natural frequency
O dimensionless beam natural frequency
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frequencies. This feature will make the natural frequency a good candidate to be employed as a sensing
mechanism, as in the case of resonant sensors. Measurands of interest, as an example being pressure and
acceleration can be transformed into a force by using an intermediate mechanism. Thereafter, this force is
applied to a resonator, which can be controlled to vibrate in its resonant frequency. In this way, the changes of
natural frequency can be transformed into the changes of the measurand.

Beams are the widely used structure to act as resonators. Double-ended tuning forks (DETF) are one of the
various beam-type resonators. A DETF consists of two parallel arranged clamped–clamped beams, as shown
in Fig. 1. A two-sided comb-drive is attached to each beam to either excite or detect its vibration. In order to
transmit the sensed force to the resonant beam, one clamped end is made free to move in the axial direction.
With this set-up, the natural frequency of the beam can be varied by changing the axial force in the beam. The
results obtained from the simulation of an electric circuit, which includes a DETF resonator, indicates that the
Fig. 1. Double-ended tuning fork with the comb-drive electrostatic excitation and detection mechanism. Each DEFT has two parallel

clamped–clamped beams. The resonant sensor measures the force from the on-chip thermal actuator.
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sensing output current of the resonator is proportional to the frequency at which it vibrates. Therefore, to
achieve a higher signal to noise ratio in the output, it is desirable to design a resonator with higher natural
frequencies.

In a recent study [2], the authors have shown that by placing the comb-drive at any location other than the
mid-point of the clamped–clamped beams, the fundamental natural frequency will increase. In this case,
the assumption of having a negligible rotary inertia for the comb-drive is no longer valid, because of the
asymmetric configuration.

To find the natural frequencies of a beam, subjected to an axial force and having no attached concentrated
mass, is a classical problem that has been solved for different combinations of the boundary conditions in the
form of characteristic equations. In fact, vibration analysis of a beam is an initial condition boundary value
problem, which can be transformed into an eigenvalue problem by using the method of separation of
variables.

The application of this method is simple for a uniform beam having conventional boundary conditions. The
problem becomes more complicated when a concentrated mass is attached to the beam. Chai and Low [3] used
the Rayleigh’s energy method to find the fundamental natural frequency of a slender uniform beam with a
concentrated mass for two different boundary conditions of simply supported and clamped–clamped. Low
and Chai [4] experimentally verified the analytical predictions of the Rayleigh’s method for a
clamped–clamped beam carrying a mass at its mid-point.

Low [5] determined the fundamental frequency of a vibrating beam carrying a concentrated mass at various
locations. He utilized the Rayleigh’s method with the trigonometric functions to study the effect of added
masses and their locations on the natural frequency of beams. He introduced an equivalent-center method in
which, the fundamental frequency of a beam carrying an off-center mass could be predicted by using the
results associated with the center-loaded beams. De Rosa et al. [6] studied the dynamic behavior of a slender
beam with a concentrated mass at an arbitrary abscissa. The beam in this study has elastic boundary
conditions, which restrain the beam elastically against any rotations and translations at either ends. The result
of their exact solution was compared with those from the approximate solutions.

Naguleswaran [7] investigated the frequency equations of that problem for all combinations of the
conventional boundary conditions in the form of 4� 4 determinants being equated to zero. Skrinar [8]
developed a model for the vibration of a beam with a rotary mass within its interval. In this study, the efficacy
of the model was demonstrated experimentally. Currie and Cleghorn [9] determined the fundamental vibration
frequency of a uniform beam subjected to an axial tension. The beam in their study was taken as built-in at
both ends and carried a concentrated mass attached to its mid-point. They assumed the beam had no rotation
at its mid-point. An analytical solution was found for the natural frequencies, mode shapes and the
orthogonality conditions of an arbitrary system of Euler–Bernoulli beams interconnected by arbitrary joints
and been subjected to arbitrary boundary conditions [10].

In a recent study, the authors [2] modeled a micro-beam resonator as an Euler–Bernoulli beam subjected to
an axial force and having a lumped mass attached to an intermediate point along the beam. They studied the
effects of the attached mass, its location, and the axial force on the natural frequencies and mode shapes of
vibration of the resonator. The modeling of the beam presented in Ref. [2] was expanded to model the MEMS
device as shown in Fig. 1 [11].

In another study, the authors re-examined the model with the assumption that the concentrated mass is
guided and having an infinite rotary inertia [12]. The practical design of the micro-beam resonators indicates
that on one hand the rotary inertia of the lumped mass cannot be ignored, and on the other hand the rotary
inertia cannot be assumed infinite. Moreover, if a resonant beam in the form of a comb-drive is either excited
or its vibration is sensed, then it will be necessary to ensure that the motion of the comb-drive forks remains in
the stable region [13]. This requirement necessitates the detailed study of the vibration of the resonator and its
exact mode shapes.

In this paper, the deterministic vibration of a beam with a lumped mass at its interval is investigated. The
effect of the rotary inertia of the lumped mass is included in the model. The beam is assumed to experience a
quasi-static axial force. Moreover, the location of the attached lumped mass can be at any point along the
beam. The methods of separation of variables and eigenvalue problem are used to derive the exact
characteristic equation. Thereafter, the exact natural frequencies of vibration and their corresponding mode
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shapes are evaluated. Although the approximate and energy methods, namely, Dunkerly and Rayleigh–Ritz,
can give the natural frequencies of the resonator with enough accuracy, they cannot be used to predict the
transient and the steady-state behavior of the resonator in the time domain. The reason being that in the
Rayleigh–Ritz method, the assumed functions are only required to satisfy the geometrical boundary
conditions, so it is admissible to take a function that does not represent the real mode shapes of the system
even qualitatively.

2. Mathematical modeling

The schematic diagram for the model of a slender beam, subjected to an axial force P, and carrying an
attached concentrated mass M along its length is shown in Fig. 2. The governing equations of motion of the
beam, under axial force, could be written as [14]

rA
q2W �

qt2
þ EI

q4W �

qx�4
� P

q2W �

qx�2
¼ 0; 0px�pLL þ LR; t40. (1)

The beam, shown in Fig. 2, can be treated as two separate beams connected to each other through the
lumped mass. One can obtain the governing equations of motion for this system by investigating the dynamics
of each separate beam, as shown in Fig. 3. In this figure, the reactions of the bending moments and shear
forces of both beams on the limped mass are shown on its free diagram. In addition, the reactions due to the
axial force are shown on the lumped mass. It can be shown that as these two reaction forces are assumed
equal, unidirectional, and opposite, they have no contribution on the kinetics of the lumped mass [2]. By
adopting two sets of coordinates originated at the location of the lumped mass, the dimensionless equations of
motion for each beam are obtained as [2]:

For the left beam:

q2W L

qt2L
þ

q4W L

qx4
L

� 2PL
q2W L

qx2
L

¼ 0; 0pxLp1; tLX0, (2)
Fig. 2. A slender beam with a lumped mass within its interval under axial force. P is assumed positive when axial force is tensile.

Fig. 3. The boundary conditions of the left and the right side beams, as well as the free body diagram of the lumped mass. The left side of

the left beam and the right side of the right beam are built-in. Other ends are connected together through the lumped mass.
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where

xL ¼
x�L
LL

; tL ¼
t

L2
L

ffiffiffiffiffiffiffi
EI

rA

s
, (3, 4)

PL ¼
PL2

L

2EI
; W LðxL; tLÞ ¼

W �
Lðx
�
L; tÞ

LL

. (5, 6)

For the right beam:

q2W R

qt2R
þ

q4W R

qx4
R

� 2PR

q2W R

qx2
R

¼ 0; 0pxRp1; tRX0, (7)

where

xR ¼
x�R
LR

; tR ¼
t

L2
R

ffiffiffiffiffiffiffi
EI

rA

s
, (8, 9)

PR ¼
PL2

R

2EI
; W RðxR; tRÞ ¼

W �
Rðx
�
R; tÞ

LR

. (10, 11)

One could use the method of the separation of variables to derive the general solution of the equation of
motion for the left beam

W LðxL; tLÞ ¼ Y LðxLÞTLðtLÞ; where Y LðxLÞ ¼
Y �Lðx

�
LÞ

LL

. (12)

From which

d2TL

dt2L
þ O2

LTL ¼ 0, (13)

d4Y L

dx4
L

� 2PL

d2Y L

dx2
L

� O2
LY L ¼ 0, (14)

where

OL ¼ oL2
L

ffiffiffiffiffiffiffi
rA

EI

r
. (15)

The general solution of Eqs. (13) and (14) is of the form

TLðtLÞ ¼ aL cos OLtL þ bL sin OLtL, (16)

Y LðxLÞ ¼ c1 cos lLxL þ c2 sin lLxL þ c3 cosh gLxL þ c4 sinh gLxL, (17)

where

l2L ¼ �PL þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

L þ O2
L

q
; g2L ¼ PL þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

L þ O2
L

q
. (18, 19)

In a similar manner, for the right beam, we have

W RðxR; tRÞ ¼ Y RðxRÞTRðtRÞ; where Y RðxRÞ ¼
Y �Rðx

�
RÞ

LR

, (20)

d2TR

dt2R
þ O2

RTR ¼ 0, (21)



ARTICLE IN PRESS
P.A. Hassanpour et al. / Journal of Sound and Vibration 308 (2007) 287–301292
d4Y R

dx4
R

� 2PR
d2Y R

dx2
R

� O2
RY R ¼ 0, (22)

OR ¼ oL2
R

ffiffiffiffiffiffiffi
rA

EI

r
. (23)

Moreover, the general solutions of Eqs. (21) and (22) are

TRðtRÞ ¼ aR cos ORtR þ bR sin ORtR, (24)

Y RðxRÞ ¼ c5 cos lRxR þ c6 sin lRxR þ c7 cosh gRxR þ c8 sinh gRxR, (25)

where

l2R ¼ �PR þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

R þ O2
R

q
; g2R ¼ PR þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

R þ O2
R

q
. (26, 27)

Using the spatial, Y’s, and time, T’s, functions, the boundary conditions can be expressed in the following
form:

At the built-in ends:
at xL ¼ 1:

Y LðxLÞ ¼ 0;
dY L

dxL

¼ 0, (28, 29)

at xR ¼ 1:

Y RðxRÞ ¼ 0;
dY R

dxR

¼ 0. (30, 31)

At the location of the lumped mass xL ¼ xR ¼ 0:

Y �L ¼ Y �R; consequently,

Y L �
1

b
Y R ¼ 0, (32)

dY �L
dx�L
¼ �

dY �R
dx�R

,

thus,

dY L

dxL

þ
dY R

dxR

¼ 0, (33)

EI
d2Y �L
dx�2L

� EI
d2Y �R
dx�2R

¼Mr2o2 dY �L
dx�L
¼ �Mr2o2 dY �R

dx�R
,

so

d2Y L

dx2
L

� b
d2Y R

dx2
R

¼ ad2O2
L

dY L

dxL

, (34)

EI
d3Y �L
dx�3L

þ EI
d3Y �R
dx�3R

¼Mo2Y �L ¼Mo2Y �R,

accordingly,

d3Y L

dx3
L

þ b2
d3Y R

dx3
R

¼ aO2
LY L. (35)
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In Eqs. (32)–(35),

b ¼
LL

LR

; a ¼
M

rALL

; d ¼
r

LL

. (36,37,38)

Substituting the general solutions of Eqs. (17) and (25) into Eqs. (28) through (35), the following
homogeneous set of algebraic equations is obtained:

cos lL sin lL cosh gL sinh gL 0 0 0 0

�lL sin lL lL cos lL gL sinh gL gL cosh gL 0 0 0 0

0 0 0 0 cos lR sin lR cosh gR sinh gR

0 0 0 0 �lR sin lR lR cos lR gR sinh gR gR cosh gR

1 0 1 0 � 1
b 0 � 1

b 0

0 lL 0 gL 0 lR 0 gR

�l2L �d2aO2
LlL g2L �d2aO2

LgL bl2R 0 �bg2R 0

�aO2
L �l3L �aO2

L g3L 0 �b2l3R 0 b2g3R

2
666666666666666664

3
777777777777777775

�

c1

c2

c3

c4

c5

c6

c7

c8

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

¼ f0g. ð39Þ

Eq. (39) has a trivial solution for c1–c8, unless the determinant of coefficients becomes zero for some specific
values of lL, lR, gL, and gR, which are essentially functions of o. The determinant of the dynamic matrix of Eq.
(39) is the characteristic equation of the vibration of the uniform beam under the axial force with a lumped mass.

Besides the natural frequencies, Eq. (39) can be used to evaluate the mode shapes. By plotting the
determinant of the dynamic matrix versus the natural frequencies, it can be deduced that every natural
frequency of the beam is a simple root of the characteristic equation; so, assuming a non-zero value for one of
the coefficients c1–c8, a reduced form of Eq. (39) will give the rest of the unknowns. Having a set of c’s, one can
make use of Eqs. (17) and (25) to find the mode shape related to that set.

3. Result and discussion

In this section, a set of dimensionless variables is introduced to represent oscillatory behavior of the system
in a form easily comparable with the data reported in literature

mass location : x ¼
LL

LL þ LR

,

mass ratio : m ¼
M

rAðLL þ LRÞ
,

radius of gyration : Z ¼
r

LL þ LR

,
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axial force : s ¼
PðLL þ LRÞ

2

2EI
,

natural frequency : O ¼ oðLL þ LRÞ
2

ffiffiffiffiffiffiffi
rA

EI

r
,

dimensionless resonator’s coordinate : X ¼ x�=ðL1 þ L2Þ; where x� ¼ x�2 þ L1.

The quantity
ffiffiffiffi
O
p

is frequently encountered in the published papers on vibration and is called frequency
parameter. The first frequency parameter of the resonator, which corresponds to the first fundamental natural
frequency, is plotted against the position of the rotary mass, x, and its radius of gyration, Z, for a typical mass
ratio, m, as shown in Fig. 4. It can clearly be seen that the case of Z ¼ 0 corresponds to the lumped mass model
with no rotary inertia, and is the lower bound of the natural frequencies. This curve is in full agreement with
the previous published works [2,3] in which, the rotary inertia of the lumped mass is neglected. In addition,
when the mass is attached at the positions with no rotation (x ¼ 0 or 0.5), the frequency parameters converge
to that of the no rotary inertia.

The case of Z-N is adopted from Ref. [12] in which, the lumped mass is assumed to be laterally guided.
The second frequency parameter of the resonator versus the position and the radius of gyration of the mass for
a typical mass ratio is shown in Fig. 5. It can be seen that the special case of Z ¼ 0 is the lower bound of the
frequency parameter as it is in the first mode. Moreover, for the cases of Z ¼ 1 and 2 they are hardly
noticeable. It is worth noting that, the frequency parameter, for each curve, has a maximum value when the
rotary lumped mass is located at the mid-point of the beam, which corresponds to the point with the
maximum rotation at this mode.

A similar phenomenon has occurred in Fig. 6, in which the third frequency parameter is plotted as a
function of the mass position and the radius of gyration for a same mass ratio as before. It is evident that the
frequency parameter has maximum where there is a node at the position of the rotary mass, and it approaches
to the case of Z ¼ 0, where the mode shape has zero slope. Moreover, it can be seen that the different curves
corresponding to the different radii of gyration approach to an imaginary upper bound curve, which
corresponds to the case when Z approaches infinity.

One could investigate this effect further in more detail for which, the first, second, and the third frequency
parameters of the resonator are plotted in Figs. 7–9, respectively, as functions of the radius of gyration and the
Fig. 4. First frequency parameter of resonator vs. the position of rotary mass, x, for m ¼ 1: Z ¼ 0 (..), Z ¼ 0.1 (- -), Z ¼ 1 (solid), Z-N (-.),

for (a) s ¼ 0 and (b) s ¼ 81.
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Fig. 5. Second frequency parameter of resonator vs. the position of rotary mass, x, for m ¼ 1: Z ¼ 0 (..), Z ¼ 0.1 (- -), Z ¼ 1 (solid),

Z-N (-.), for (a) s ¼ 0 and (b) s ¼ 81.

Fig. 6. Third frequency parameter of resonator vs. the position of rotary mass, x, for m ¼ 1: Z ¼ 0 (..), Z ¼ 0.1 (- -), Z ¼ 1 (solid), Z-N

(-.), for (a) s ¼ 0 and (b) s ¼ 81.
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mass ratio. In each figure, the mass location is chosen from Figs. 4–6, respectively, to achieve the maximum
gradient of the frequency parameter. It can be seen that the curves of the frequency parameters show
asymptotic behavior. As can be seen from Figs. 7–9, the asymptote, in each family of curves, corresponds to
the frequency parameter of a beam with a guided mass of the same mass ratio and position [12]. This also
justifies the increase in the natural frequency upon the inclusion of the rotary inertia to the model, since a
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Fig. 7. First frequency parameter vs. radius of gyration, Z, for x ¼ 0.17: m ¼ 0.1(..), m ¼ 0.2 (- -), m ¼ 0.5 (solid), m ¼ 1 (-.).

Fig. 8. Second frequency parameter vs. radius of gyration, Z, for x ¼ 0.5: m ¼ 0.1(..), m ¼ 0.2 (- -), m ¼ 0.5 (solid), m ¼ 1 (-.).

P.A. Hassanpour et al. / Journal of Sound and Vibration 308 (2007) 287–301296
guided mass separates the beam into two shorter beams with a higher rigidity, and hence increases the natural
frequency.

Fig. 10 shows the first frequency parameter versus the mass location and ratio for a typical value of the
radius of gyration. It can be seen that for a given radius of gyration, a lower mass ratio does not necessarily
results into a higher natural frequency, but it depends on the mass location too.
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Fig. 9. Third frequency parameter vs. radius of gyration, Z, for x ¼ 0.38: m ¼ 0.1 (..), m ¼ 0.2 (- -), m ¼ 0.5 (solid), m ¼ 1 (-.).

Fig. 10. First frequency parameter vs. mass location, x, for Z ¼ 2: m ¼ 0.1 (..), m ¼ 0.2 (- -), m ¼ 0.5 (solid), m ¼ 1 (-.).

P.A. Hassanpour et al. / Journal of Sound and Vibration 308 (2007) 287–301 297
For instance, when xo0.16, resonators with higher mass ratios exhibit higher natural frequencies at the first
mode of vibration. A similar effect can be seen in Figs. 11 and 12 in which, the second and the third frequency
parameters are plotted.

Fig. 13 depicts the first frequency parameter of the resonator versus the axial force for various sets of the
mass locations, ratios, and the radii of gyration, compared to the cases of the clamped–clamped beam and the
beam with the guided mass. This figure shows that depending on the mass location, ratio, and the radius of
gyration, the natural frequency of the resonator may be even more than the corresponding clamped–clamped
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Fig. 11. Second frequency parameter vs. mass location, x, for Z ¼ 2: m ¼ 0.1 (..), m ¼ 0.2 (- -), m ¼ 0.5 (solid), m ¼ 1 (-.).

Fig. 12. Third frequency parameter vs. mass location, x, for Z ¼ 2: m ¼ 0.1 (..), m ¼ 0.2 (- -), m ¼ 0.5 (solid), m ¼ 1 (-.).
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beam. This conclusion is important in the design of a MEMS-based resonator, in which the designer has to
decide on the mechanism of excitation of the resonator and the detection of its oscillations.

As pointed out before, one is able to derive the mode shapes by using Eqs. (17), (25), and (39). The first two
mode shapes for a set of parameters s ¼ 0, x ¼ 0.5, m ¼ 6, and Z ¼ 0.6 presented in Fig. 14, which confirm the
influence of the mass rotary inertia and the location on the frequency parameter. It can be seen that the beam
has a smaller slope at its mid-point compared to the case with no rotary mass [2].
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Fig. 13. First frequency parameter of resonator vs. axial force, s, for x ¼ 0.5, m ¼ 0.1, Z ¼ 0.5 (-.), x ¼ 0.5, m ¼ 0.1, Z ¼ 0.1 (solid),

x ¼ 0.3, m ¼ 0.1, Z ¼ 0.1 (- -), guided beam x ¼ 0.3, m ¼ 0.1 (..), and clamped–clamped beam.

Fig. 14. First (a) and second (b) mode shapes of a beam with parameters s ¼ 0, x ¼ 0.5, m ¼ 6, and Z ¼ 0.6. Mode shapes are normalized

to have the maximum displacement equal to one unit. Solid rectangle represents the lumped mass.

P.A. Hassanpour et al. / Journal of Sound and Vibration 308 (2007) 287–301 299
The mode shapes of a non-symmetric beam with parameters s ¼ 0, x ¼ 0.2, m ¼ 0.6, and Z ¼ 0.13 are
illustrated in Fig. 15. As expected, at the location of the lumped mass, the beam has less amplitude than the
corresponding point on the other half of the beam. The significance of this figure is that it gives the designer an
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Fig. 15. First (a) and second (b) mode shapes of a beam with parameters s ¼ 0, x ¼ 0.2, m ¼ 0.6, and Z ¼ 0.13. Mode shapes are

normalized to have the maximum displacement equal to one unit. Solid rectangle represents the lumped mass.
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insight idea as how the rotary inertia can be used to extend the stability region of operation of the resonator by
reducing the rotation of the comb-drive.
4. Conclusion

Need for the exact solution of the oscillatory behavior of a beam with a lumped mass within its interval
under an axial force is encountered in the study of double-ended tuning fork (DETF) used as resonator
structure in micro-machined devices. In this paper, the beam is treated as two beams connected to each other
through the lumped mass and the characteristic equation is derived from the governing equations of motion of
the two beams. It has been shown that higher natural frequencies than the case with a lighter mass can be
achieved by proper placement of the lumped mass. It is found that in some cases, the concentrated mass has no
influence on the specific natural frequencies of the beam. During the design of a DETF, one must be aware of
the interaction that exist between different design parameters. The approach in this paper is capable to
determine the exact mode shapes of vibrations that are inevitably required in the study of the system in the
time-domain, as well as the stability of electrostatic exciter/detector.
References

[1] X. Sun, R. Horowitz, K. Komvopoulos, Stability and resolution analysis of a phase-locked loop natural frequency tracking system

for MEMS fatigue testing, ASME Transactions, Journal of Dynamic Systems, Measurement and Control 124 (2002) 599–605.

[2] P.A. Hassanpour, W.L. Cleghorn, E. Esmailzadeh, J.K. Mills, Exact solution of the oscillatory behavior of a beam with a

concentrated mass within its interval under axial force, Journal of Vibrations and Control (2007), in press.

[3] G.B. Chai, K.H. Low, On the natural frequencies of beams carrying a concentrated mass, Journal of Sound and Vibration 160 (1993)

161–166.

[4] K.H. Low, G.B. Chai, Experimental and analytical investigations of vibration frequencies for center-loaded beams, Computers and

Structures 48 (1993) 1157–1162.

[5] K.H. Low, Equivalent-center method for quick frequency analysis of beams carrying a concentrated mass, Computers and Structures

50 (1994) 409–419.



ARTICLE IN PRESS
P.A. Hassanpour et al. / Journal of Sound and Vibration 308 (2007) 287–301 301
[6] M.A. De Rosa, C. Franciosi, M.J. Maurizi, On the dynamic behavior of slender beams with elastic ends carrying a concentrated

mass, Computers and Structures 58 (1996) 1145–1159.

[7] S. Naguleswaran, Lateral vibration of a uniform Euler–Bernoulli beam carrying a particle at an intermediate point, Journal of Sound

and Vibration 227 (1999) 205–214.

[8] M. Skrinar, On elastic beams parameter identification using eigenfrequencies changes and the method of added mass, Computational

Materials Science 25 (2002) 207–217.

[9] I.G. Currie, W.L. Cleghorn, Free lateral vibrations of a beam under tension with a concentrated mass at the mid-point, Journal of

Sound and Vibration 123 (1988) 55–61.

[10] S.M. Wiedemann, Natural frequencies and mode shapes of arbitrary beam structures with arbitrary boundary conditions, Journal of

Sound and Vibration 300 (2007) 280–291.

[11] P.A. Hassanpour, W.L. Cleghorn, E. Esmailzadeh, J.K. Mills, Modeling and analysis of a resonant sensor actuated by a bent beam

thermal actuator, Proceedings of the 17th IASTED International Conference on Modeling and Simulation, Montreal, Quebec, Canada,

May 24–26, 2006.

[12] P.A. Hassanpour, W.L. Cleghorn, E. Esmailzadeh, J.K. Mills, Exact solution of the oscillatory behavior of a beam with a guided

mass within its interval under axial force, Proceedings of CANCAM 2007, Toronto, Canada, June 3–7, 2007.

[13] G. Zhou, D. Low, P. Dowd, Method to achieve large displacements using comb-drive actuators, Proceedings of SPIE-The

International Society for Optical Engineering 4557 (2001) 428–435.

[14] S.S. Rao, Mechanical Vibrations, Pearson Prentice-Hall, Upper Saddle River, NJ, 2004.


	Vibration analysis of micro-machined beam-type resonators
	Introduction
	Mathematical modeling
	Result and discussion
	Conclusion
	References


